MP Type | ADC |
OS Type | Multi-Thread Mbed , etc |
Calculation accuracy | integer calculation |
Characteristic Conversion | Non-linear conversion(Two-dimensional table method) |
Filter | Simple Moving Average ( SMA ) |
Diagnostics | SP Max/Min , CP Max/Min , MP AnalogIn fault |
Software Specifications

Caution)
Please note that the return value of the Mbed read_u16 function may be MSB-padded or LSB-packed. The adc_read_u16_wrapper function assumes LSB packing.
File ( Mbed C++)
main.cpp | application source code file |
pcmp.cpp | ADC Component source code file |
pcmp.h | ADC Component header file |
oss-ec.h | OSS-EC header file |
Source Code
- Constants for components Constants to match the component
- Constants for MPU Constants to match the microcontroller of the product
- Constants for circuits Constants to match the circuit of the product
// BCL No.00000030
// Interger constant
#define iInt_const 256U // Interger constant
// Filter definitions
#define iSMA_num 4U // Simple moving average number
// MPU definitions
#define iADC_bit 16U // MPU ADC bit
// CAUTION : When Mbed is selected, 16 bit is fixed
#define iPIN_adc A0 // MPU Port Pin (ADC)
// P-CMP ( Sysyem Parts , Circuit , IC ) definitions
// Model type System Parts definitions
#define iData_num 5U // Number of characteristic table elements
const sint32 Data_x[iData_num] = // X axis for table search : Voltage [mV]
{
0 , 500 , 1000 , 1500 , 2000 // X data
};
const sint32 Data_y[iData_num] = // Y axis for table search : Physical [unit]
{
10 , 15 , 30 , 50 , 100 // Y data
};
#define iVout_max 3300 // Vout Max [mV]
#define iVout_min 0 // Vout Min [mV]
#define iPhysical_max 100 // Physical Max [unit]
#define iPhysical_min 0 // Physical Min [unit]
// Circuit definitions
#define iADC_vdd 3300U // MPU Vdd [mV]
#define iK_tc ( 1*iInt_const ) // Circuit Transformation ratio
sp2ap_t Phy_Read( uint16 cmd )
{
return( pcmp( cmd ) );
}
static sp2ap_t pcmp( uint16 cmd )
{
mp2cp_t ai = mpw( cmd ); // A/D value read
cp2sp_t vi = cp( ai ); // A/D value to Voltage value conversion
sp2ap_t phy = sp( vi ); // Voltage value to Physical value conversion
return( phy );
}
static sp2ap_t sp( cp2sp_t in )
{
sp2ap_t out = { iMP_Read , iNormal ,iNormal , iNormal , 0 };
cp2sp_t wk;
// Input buffering
wk = in;
if( ( wk.cp_stt == iMP_Read ) &&
( wk.cp_dia == iNormal ) &&
( wk.mp_dia == iNormal ) )
{
// Voltage value to Physical value conversion
out.phy = lib_s32_Tbl2D( wk.vi , &Tbl );
// Physical value Simple Moving Average calculation
out.phy = lib_s32_SMA( out.phy , &Phy_SMA );
// Physical value Max or Min Diagnostics
out.sp_dia = lib_s32_MaxMin( &out.phy , iPhysical_max , iPhysical_min );
}
else
{
// Nothing to do
}
out.sp_stt = wk.cp_stt;
out.cp_dia = wk.cp_dia;
out.mp_dia = wk.mp_dia;
return( out );
}
static cp2sp_t cp( mp2cp_t in )
{
cp2sp_t out = { iMP_Read , iNormal , iNormal , 0U };
mp2cp_t wk;
// Input buffering
wk = in;
if( ( wk.mp_stt == iMP_Read ) &&
( wk.mp_dia == iNormal ) )
{
// A/D value to Voltage value conversion
out.vi = (uint16)mac_UpLmt( (uint32)wk.ai * iK_tc / iInt_const , iUint16_Max );
// Voltage value Max or Min Diagnostics
out.cp_dia = lib_u16_MaxMin( &out.vi , iVout_max , iVout_min );
}
else
{
// Nothing to do
}
out.cp_stt = wk.mp_stt;
out.mp_dia = wk.mp_dia;
return( out );
}
static mp2cp_t mpw( uint16 cmd )
{
mp2cp_t out = { iMP_Read , iNormal , 0U };
if( cmd == iMP_Read )
{
out = mp();
}
else
{
// Non Command Error
out.mp_dia = iMPL_NG;
out.mp_stt = iError;
}
return( out );
}
static mp2cp_t mp( void )
{
mp2cp_t out = { iMP_Read , iNormal , 0U };
uint16 wk;
uint8 sts;
// Read A/D convension value
sts = adc_read_u16_wrapper( an , &wk );
// M-CAL judgment
if( sts != iNg ) // M-CAL normal
{
out.ai = wk;
out.mp_dia = iNormal;
out.mp_stt = iMP_Read;
}
else // M-CAL abnormal
{
out.mp_dia = iMPL_NG;
out.mp_stt = iError;
}
return( out );
}